Transmission & Pathogenesis of Tuberculosis

Shu-Hua Wang, MD, MPH & TM
Assistant Professor of Medicine
The Ohio State University

May 1, 2012

Virtually all \textit{M. tuberculosis} is transmitted by airborne particles that are 1-5 \textmu m in diameter.

\textit{NEJM} 345:189, 2001

\textit{Mycobacterium tuberculosis} & TB disease

- Acid fast bacillus
- Slow growing
- Intracellular pathogen
- Thick waxy cell wall
- Non-replicating persistence
- Productive cough
- Dramatic weight loss
- Night sweats
- General malaise
- Pulmonary or extra-pulmonary

\textit{Slide courtesy of Joanne Turner, PhD}
The Taxonomic Tree for Selected Mycobacteria and Related Species

ORDER [Actinomycetales]
FAMILY [Mycobacteriaceae, Actinomycetaceae, Streptomycetaceae]
GENUS [Mycobacterium, Nocardia, Actinomyces, Streptomyces]
SPECIES [M. tuberculosis complex, M. leprae, NTM = nontuberculous mycobacteria]

Overview of inhaled mycobacterial diseases
(prototype: M. tb, other major NTM: M. aviumintracellulare Complex and M. kansaii)

The Paradigm: Latent Infection vs. Active Disease
- Inhaled airborne droplet nuclei
- Phagocytosis by alveolar macrophages
- Regional spread
- Dissemination
- Resolution-common development of effective cell-mediated immune response
- Primary active disease (uncommon in healthy host)
- Reactivation disease

Transmission of M. tuberculosis
- M. tb spread via airborne particles called droplet nuclei
- Expelled when person with infectious TB coughs, sneezes, shouts, or sings
- Transmission occurs when droplet nuclei inhaled and reach the alveoli of the lungs, via nasal passages, respiratory tract, and bronchi

Pathogenesis
- Droplet nuclei containing tubercle bacilli are inhaled, enter the lungs, and travel to the alveoli
- Tubercle bacilli multiply in the alveoli
M. tb infection Pathway

Stage 1
- Spread person to person by aerosol
- Droplet inhaled
- Larger droplets lodge in nose and throat
- Smaller droplets reach alveoli (small air sacs)

Pathogenesis
- A small number of tubercle bacilli enter the bloodstream and spread throughout the body
 - Tubercle bacilli may reach any part of the body, including areas where TB disease is more likely to develop
 - Brain, larynx, lymph node, lung, spine, bone, or kidney

Pathogenesis
- Within 2 to 8 weeks, special immune cells called macrophages ingest and surround the tubercle bacilli
 - The cells form a barrier shell, called a granuloma, that keeps the bacilli contained and under control (LTBI)
- If the immune system cannot keep the tubercle bacilli under control, the bacilli begin to multiply rapidly (TB disease)
 - This process can occur in different areas in the body, such as the lungs, kidneys, brain, or bone

Slide courtesy of Jordi Torrelles, PhD
Transmission of Tuberculosis and Progression from Latent Infection to Reactivated Disease

Latent TB Infection (LTBI)

- Granulomas may persist (LTBI), or may break down to produce TB disease
- 2 to 8 weeks after infection, LTBI can be detected via tuberculin skin test (TST) or interferon gamma release assay (IGRA)
- Immune system is usually able to stop the multiplication of bacilli
- Persons with LTBI are not infectious and do not spread organisms to others
Containment / Latency

- In some, the granulomas break down, bacilli escape and multiply, resulting in TB disease
- Can occur soon after infection, or years later
- Persons with TB disease are usually infectious and can spread bacteria to others
- Positive \(M.\text{tb} \) culture confirms TB diagnosis

Transmission of \(M.\text{tb} \)

- Transmission is airborne from patients with active pulmonary TB
- **Vehicle**: droplet nuclei (1-5 µm)
- **Quantity** of organism high with cavitary disease
- **Environment**: spread is enhanced by crowded, poorly ventilated spaces
- **Bottom line**: duration of exposure and concentration of organisms in the air
- **Host susceptibility increases** risk of infection and disease progression
Risk of Exposure/Transmission

- Congregate settings
 - Hospitals, autopsy suites, long term care facilities
 - Correctional facilities
 - Bars
 - Choirs
 - Airplanes, ships

- Aerosol producing procedures: intubation, bronchoscopy, sputum induction

Who is Infectious?

- Smear + > smear* –
- Cavitary > non-cavitary
- Close contact > casual contact
- Prolonged > brief exposure
- Men > women
- Young > old
- HIV + = HIV –

Smear negative cases can still transmit

Drug Resistant TB

- Transmitted same way as drug-susceptible TB
- MDR-TB and XDR-TB are not more infectious
- Unsuspected or delayed detection of drug resistance may delay start of therapy and prolong period of infectiousness

Sites of Disease

- Lungs (pulmonary): most common site, usually infectious
- Miliary: hematogenous dissemination; rare, but fatal if untreated
- Central nervous system: usually occurs as meningitis, but can occur in brain or spine
Sites of Disease

- Outside the lungs (extra-pulmonary): usually not infectious unless person has;
 - Concomitant pulmonary disease
 - Extrapulmonary disease in the oral cavity or larynx, or
 - Extrapulmonary disease with open site, especially with aerosolized fluid

Classification System for TB

- Based on TB pathogenesis (stage of disease)
- Helps clinician track the development of TB in patients
- Persons with class 3 or 5 TB should be reported to health department
- Patients should not be classified as class 5 for more than 3 months

LTBI vs. Active TB Disease

<table>
<thead>
<tr>
<th>LTBI</th>
<th>Active TB Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>No symptoms or physical findings suggestive of TB</td>
<td>Symptoms may include fever, cough, weight loss, night sweats, fatigue</td>
</tr>
<tr>
<td>TST or IGRA usually positive</td>
<td>TST or IGRA usually positive</td>
</tr>
<tr>
<td>Radiograph is typically normal</td>
<td>Radiograph may be abnormal</td>
</tr>
<tr>
<td>Sputum smears & cultures are negative</td>
<td>Sputum smears & cultures may be positive</td>
</tr>
<tr>
<td>Cannot spread to others</td>
<td>May spread TB bacteria to others</td>
</tr>
<tr>
<td>Treat for LTBI to prevent TB disease</td>
<td>Needs treatment for TB disease</td>
</tr>
</tbody>
</table>

TB Classification System

<table>
<thead>
<tr>
<th>Class</th>
<th>Stage of Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No exposure, no infection</td>
</tr>
<tr>
<td>1</td>
<td>Exposure, no evidence of infection</td>
</tr>
<tr>
<td>2</td>
<td>TB infection, no disease</td>
</tr>
<tr>
<td>3</td>
<td>TB, clinically active</td>
</tr>
<tr>
<td>4</td>
<td>TB, not clinically active</td>
</tr>
<tr>
<td>5</td>
<td>TB suspect</td>
</tr>
</tbody>
</table>
Questions?