Mycobacterium tuberculosis Transmission and Disease Progression

Mark Lobato, M.D.

Division of Tuberculosis Elimination

Centers for Disease Control and Prevention

TB Intensive Workshop Newark, NJ April 12, 2011

Objectives

- Understand transmission dynamics
- Review TB immunology and pathogenesis
- Demonstrate public health implications
 - Vaccination and therapeutics
 - Diagnostics

Route of Transmission

Transmission of Tuberculosis

Probability of Transmission

- □ Host
 - Inoculum (smear, culture, cavitation)
- Organism
 - Virulence factors
- Environment
 - Space/ventilation
 - Time

Variations in Inoculum

□ Estimates of *M. tuberculosis* aerosol production (quanta per hour)

•	Patient on early treatment								~1

- Untreated cavitary TB 13
- Laryngeal TB60
- Bronchoscopy250

Environment

TB Outbreaks Move Through Time

Sosa L. Inter JTBLung Dis 2008;12:689

TB Moves Through Place

- ∼ Key
- Location
- Source patient
- Secondary patients

TB Can Appear as Outbreaks

Amplifiers of TB Transmission

TB Genotyping Program

- Spoligotyping
- Mycobacterial interspersed repetitive units (MIRU)

Mycobacterium tuberculosis

- Obligate aerobes
- Slow-growing
- Intracellular pathogens
- Hydrophobic: lipid content in the cell wall
- LAM (lipoglycan lipoarabinomannan)
- "Acid-fast bacilli"

Remer Let al. Molecular Genetics of Mycobacteria, Ed. Hatfull G and Jacobs W. ASM Press, 2000

Acid Fast Bacilli

fluorochrome stain

Pathogenesis

- Outcome from infection depends on immune responses
- Certain medical conditions increase risk for progression to TB disease

Photo: David Rochkind

Conditions Increasing Likelihood of Progression from Infection to Disease

- Very young age
- □ T-cell deficiency (e.g., HIV)
- ☐ Treatment with TNF-alpha antagonists
- Solid organ transplantation
- ☐ High-dose corticosteroids
- Diabetes mellitus
- End-stage renal disease
- Malnutrition
- Silicosis
- Hypercholesterolemia?

Antimycobacterial Immunity

<u>Innate</u> <u>Immunity</u>

- Cell populations (Toll-like receptors)
- Bactericidal molecules
 - Enzymes (lysozyme, etc.)
 - Reactive nitrogen and oxygen intermediaries

Humoral Immunity

Adaptive Immunity

- Cell-mediated Immunity
- □ Phagocytes (Antigen presenting cells)
 - Macrophage
 - Dendritic
 - Monocytes
- Effector cells
 - CD4+, CD8+ T cells
 - CD1 (NKT)
 - γδ T cells
- Cytokines (IFN-g, TNF-α, IL-12, IL-4)

Toll-like Receptors (TLRs)

- ☐ TLRs initiate first immune response
- ☐ TLR-8 on the X chromosome
- Males have 1 copy-may be more susceptible

First line of defense

- Dendritic cells
- Macrophages
- Stimulated T cells

Microscopic Level

CD4+ / Human Leukocyte Antigen Interaction

Cellular Immune Response

Cytokine Storm

http://www.medclip.com/index.php?page=videos§ion= view&vid_id=101067

Host Responses

Granuloma

When Host Immunity Fails

- Mycobacteria are spread by migrating cells to local lymph nodes
- ☐ From the lymph nodes, they disseminate via the blood stream to different body sites
- They may continue to grow and cause early disease at any site
- They may be contained, then "reactivate", especially in the lung apices, but anywhere is possible

M. tb Strategies to Evade Host Immunity

- Cell membrane
 - Fatty acids
 - NO arginase inhibition
 - Efflux pumps
 - Mannose coating
- Resistance to phagosome pH
- CD4 cells remain compartmentalized unable to be mobilized to lymph nodes

Evasion of Acidic Conditions

Inhibition of

- Phagosome-lysosome fusion
- Lysosome acidification
- Activation of hydrolytic enzymes

Amaral L. Journal of Antimicrobial Chemotherapy 2007;59:1237

Role of Efflux Pumps

Adams KN, et al. Cell doi:10,1016/jcell.2011.02.002

Public health implications

LAM Assay for MTB Screening

The usefulness of urine-LAM (lipoglycan lipoarabinomannan) is limited because of low sensitivity. Sputum-LAM has better sensitivity but poor specificity.

Dheda K, et al. Clinical utility of commercial LAM-ELISA assay for TB diagnosis in HIV-infected patients using urine and sputum samples. PLoS ONE 2010;5: e9848

Priming the Immune System: Bacille Calmette-Guérin (BCG) Vaccine

- Calmette & Guérin1908-1921
- No new TB vaccine in 90 years

Potential Uses of a TB Vaccine

Vaccine Development

- Live attenuated vaccines
 - Genetically-modified BCG
 - Genetically engineered mutants
 - Live attenuated vectors (viruses or bacteria)
- Subunit vaccines
 - Protein, peptide, lipid, or carbohydrate antigens, with or without adjuvants
- DNA vaccines
 - DNA encoding whole proteins or peptide epitopes of M. tuberculosis

TB Vaccine Pipeline

Vaccine Candidate	Pre-Clinical	Phase I	Phase II	Phase IIb	Phase I
AERAS402/Crucell Ad35 Crucell N.V./Aeras					
MVA85A/AERAS-485 OETC/Aeras					
GSK M72 GSK Biologicals/Aeras					
Hybrid 1 SSI IC-31 SSI, TBVI, Intercell					
HyVac4/AERAS-404 sanofi pasteur/SSI/Intercell/Aeras					
VPM 1002 Max Planck/Vakzine Projekt Management GmbH/TBVI					
AdAg85A McMaster University					
RUTI Archivel Farma, S.I.					
Hybrid 1 SSI CAF01 SSI					
AERAS-rBCG Aeras					
AERAS-Capsid Aeras					
Other rBCG rMtb Albert Einstein S. of Med., Institute Pasteur, Univ. of Zaragoza, TBVI					
AERAS-other virus Aeras					
Protein/Polysaccharides Inst. Pasteur de Lille/Inserm, Albert Einstein S. of Med., Aeras, Karolinska Instit.					

Clinical trials with MVA85A

Implications for Therapy

- Immune modulation
 - Use of IFN-α as an immune modulator
 - Ex vivo pulsing of dendritic cells to prime T cells
- ☐ Target specific sites
 - Receptors
 - Efflux pump
 - Genes

Clinical Correlate

- Tumor necrosis factor (TNF)-α
 - Maintain granuloma compartmentalization
 - Factor in pathogenesis of RA
- TNF blockers reactivate LTBI

TST Versus In-vitro Assays

T cell-Based Diagnostics IFN-gamma Release Assays (IGRA's)

- IFN-g is a pro-inflammatory cytokine released by T cells and NK cells
- Two commercially available tests:
 - QuantiFERON®TB Gold IT

T-Spot®. TB

Tuberculin skin test

1900 2011

Special Circumstances

Reaction	Causes	At risk	Action
False- positive	NTM BCG	MOTT Vaccinated	Evaluate Assess
False- negative	Anergy Recent Infants	HIV infected < 10 weeks Age <6 mos	No panel Retest Retest

Summary

- M. tb is an intracellular organism with several virulence and defense mechanisms
- Host response is mediated especially by the Thelper
- Knowing host/organism interactions is useful for developing diagnostic tests and treatment modalities including vaccines

Thank you!

