The PREVENT TB Study
TB Trials Consortium Study 26

3 months of once-weekly rifapentine plus INH vs.
9 months of daily INH
for treatment of latent TB infection

Background

• Treatment of latent *M. tuberculosis* infection is a key component of TB prevention and elimination

• 9 months of isoniazid (INH) is highly efficacious, but effectiveness is diminished by low completion rates (30-60%)

• A shorter regimen is needed
 – High completion rates, effectiveness, and tolerability
Study Design

Once-weekly, directly-observed rifapentine + INH x 3 months (3HP) vs. Daily, self-administered INH x 9 months (9H)

For the treatment of latent TB infection in high-risk tuberculin skin-test reactors

Randomized, open-label
33 months of follow-up from date of enrollment
Study Doses

• **Rifapentine + INH x 3 months (3HP):** 12 doses
 – Rifapentine 900 mg
 • Graduated dosing for persons ≤ 50 kg
 – Isoniazid 15-25 mg/kg; 900 mg max.

• **Isoniazid x 9 months (9H):** 270 doses
 – Isoniazid 5-15 mg/kg; 300 mg max.

• **Vitamin B6 (pyridoxine):** 50 mg with each INH dose
Inclusion Criteria

- Persons > 2 years old who were:
 - Tuberculin skin-test (TST)-positive close contacts of a culture-confirmed TB case
 - TST-converters
 - Documented negative → positive within 2 years
 - HIV-infected with
 - Positive TST
 - Close contact to TB case regardless of TST
 - TST-positive, fibrosis on chest radiograph consistent with prior untreated TB
 - Children 2-4 years old with + TST or close contact with a culture-confirmed TB case
Exclusion Criteria

- Confirmed or suspected TB
- TB resistant to INH or rifampin in source case
- History of treatment with
 - > 14 consecutive days with a rifamycin
 - > 30 days with INH
- Prior treatment of TB or *M. tuberculosis* infection in HIV-uninfected persons
- Intolerance to INH or rifamycins
- Aspartate aminotransferase (AST) > 5x upper limit if AST determined
- Pregnant or lactating females
- HIV-1 antiretroviral therapy within 90 days of enrollment
- Weight < 10 kg
Primary Aim

• Evaluate the effectiveness of weekly 3HP vs. daily 9H

• Primary endpoint:
 - Culture-confirmed TB in persons \geq 18 y.o and culture-confirmed or clinical TB in persons $<$ 18 y.o.
Secondary Aims

- Evaluate the tolerability of weekly 3HP vs. daily 9H
- Secondary endpoints:
 - Treatment completion
 - Permanent drug discontinuation for any reason
 - Drug discontinuation due to adverse drug reaction
 - Grade 3, 4, and 5 toxicity
 - Culture-confirmed or clinical TB in all persons
 - Resistance to study medications among persons developing TB
Study Design and Sample Size

• Non-inferiority study design
 – Non-inferiority margin (delta): 0.75%
• > 80% power to demonstrate that 3HP is not inferior to 9H
 – 3,200 persons per arm
• Allow for 20% loss
 – Loss to follow-up
 – Clustering of enrollments
• 4,000 persons per arm

Possible Scenarios of Observed Treatment Differences in Noninferiority Trials

Enrollment

• Enrollment began June 2001

• Enrollment ended February 15, 2008

• Follow-up ended September 30, 2010
Analysis Populations

• Enrolled before February 15, 2008
 – Completed 33 months of follow-up by September 30, 2010

• Intention-to-treat (ITT)
 – All persons enrolled in the study

• Modified intention-to-treat (MITT)
 – Enrolled in the study
 – Eligible

• Per protocol (PP)
 – All persons enrolled in the study who were eligible
 – Completed study drug within targeted time period
 – Or developed TB or died but completed ≥ 75% of expected doses prior to event
 – All follow-up time counted; did not require reaching 33 months
Effectiveness and Efficacy

• Effectiveness:
 – TB rate among all persons enrolled who were eligible for the study
 • MITT
 • Takes into account nonadherence

• Efficacy
 – TB rate among all persons who were enrolled, eligible, and completed therapy
 • PP
 • Best-case scenario regarding drug activity
Analysis Populations

• In group settings (e.g., households), participants could be placed on the same regimen as the first person in the group (cluster)
 – Only the first person in that cluster was randomized
 – The size of clusters varied by arm early in the study
 – Later, entire cluster had to be identified before randomization of first person

• For MITT and PP populations, we therefore assessed results for:
 – All patients enrolled
 – First patient enrolled in a cluster
Analysis Populations

- Enrolled (ITT) 8,053
- Eligible (MITT) 7,731
 - 9H 3,745
 - 3HP 3,986
- Per protocol (PP) 5,858
 - 9H 2,585
 - 3HP 3,273
Reason for Ineligibility

N=322 (of 8,053)

<table>
<thead>
<tr>
<th>Reason</th>
<th>Frequency</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source TB case resistant to INH or RIF</td>
<td>161</td>
<td>50</td>
</tr>
<tr>
<td>Source TB case culture-negative for M. tuberculosis</td>
<td>103</td>
<td>32</td>
</tr>
<tr>
<td>Positive TST not confirmed</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>No susceptibility testing for index case</td>
<td>14</td>
<td>4</td>
</tr>
<tr>
<td>TB at enrollment</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>322</td>
<td>100%</td>
</tr>
</tbody>
</table>

Clinical and Demographic Characteristics

MITT Population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>9H (N=3,745)</th>
<th>3HP (N=3,986)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (median, IQR)</td>
<td>36 (25-46)</td>
<td>37 (25-47)</td>
</tr>
<tr>
<td>Male sex</td>
<td>2,004 (54)</td>
<td>2,210 (55)</td>
</tr>
<tr>
<td>Race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>2,160 (58)</td>
<td>2,296 (58)</td>
</tr>
<tr>
<td>Black</td>
<td>947 (25)</td>
<td>978 (25)</td>
</tr>
<tr>
<td>Asian/Pac. Island</td>
<td>490 (13)</td>
<td>494 (12)</td>
</tr>
<tr>
<td>Am./Can. Indian</td>
<td>33 (1)</td>
<td>84 (2)*</td>
</tr>
<tr>
<td>Multiracial (Brazil)</td>
<td>115 (3)</td>
<td>134 (3)</td>
</tr>
<tr>
<td>Ethnicity (US/Can)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanic</td>
<td>1,442 (43)</td>
<td>1,576 (44)</td>
</tr>
<tr>
<td>Non-Hispanic</td>
<td>1,899 (57)</td>
<td>1,966 (56)</td>
</tr>
</tbody>
</table>
Clinical and Demographic Characteristics
MITT Population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>9H</th>
<th>3HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV-infected</td>
<td>100 (3%)</td>
<td>105 (3%)</td>
</tr>
<tr>
<td>BMI (median, IQR)</td>
<td>27 (23-30)</td>
<td>27 (23-31)</td>
</tr>
<tr>
<td>Site of recruitment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S./Canada</td>
<td>3,341 (89)</td>
<td>3,542 (89)</td>
</tr>
<tr>
<td>Brazil/Spain</td>
<td>404 (11)</td>
<td>444 (11)</td>
</tr>
<tr>
<td>Completed high school</td>
<td>2,126 (57)</td>
<td>2,269 (57)</td>
</tr>
<tr>
<td>Jail/prison ever</td>
<td>175 (5)</td>
<td>221 (6)</td>
</tr>
<tr>
<td>Unemployed</td>
<td>390 (10)</td>
<td>424 (11)</td>
</tr>
<tr>
<td>Hx EtOH at enrollment</td>
<td>1,888 (50)</td>
<td>1,929 (48)</td>
</tr>
<tr>
<td>Hx IDU at enrollment</td>
<td>136 (4)</td>
<td>149 (4)</td>
</tr>
<tr>
<td>Current tobacco</td>
<td>1,034 (28)</td>
<td>1,112 (28)</td>
</tr>
</tbody>
</table>
Clinical and Demographic Characteristics
MITT Population

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>9H N=3,745</th>
<th>3HP N=3,986</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indication for TLI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Close contact</td>
<td>2,609 (70)</td>
<td>2,857 (72)</td>
</tr>
<tr>
<td>Recent TST converter</td>
<td>972 (26)</td>
<td>953 (24)</td>
</tr>
<tr>
<td>HIV-infected</td>
<td>74 (2)</td>
<td>87 (2)</td>
</tr>
<tr>
<td>Fibrosis on CXR</td>
<td>90 (2)</td>
<td>89 (2)</td>
</tr>
<tr>
<td>Co-morbid liver disease</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCV</td>
<td>97 (3)</td>
<td>99 (3)</td>
</tr>
<tr>
<td>HBV</td>
<td>60 (2)</td>
<td>42 (1)</td>
</tr>
</tbody>
</table>
Follow-up and Retention

<table>
<thead>
<tr>
<th>Measure</th>
<th>9H</th>
<th>3HP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Person-years of follow-up</td>
<td>9,619</td>
<td>10,327</td>
</tr>
<tr>
<td># months in study (mean)</td>
<td>30.3</td>
<td>30.7</td>
</tr>
<tr>
<td>Proportion of participants completing month 33 follow-up visit</td>
<td>86%</td>
<td>88%</td>
</tr>
</tbody>
</table>
Event rate estimates and the non-inferiority test for A33

33 months of follow-up from time of randomization

<table>
<thead>
<tr>
<th>Population</th>
<th>study arms</th>
<th># of patients</th>
<th># TB cases</th>
<th>TB per 100 p-y</th>
<th>Cumulative TB rate (%)</th>
<th>Difference in cumulative TB rate</th>
<th>Upper bound of 95% CI of difference in cumulative TB rates*</th>
</tr>
</thead>
<tbody>
<tr>
<td>MITT</td>
<td>9H</td>
<td>3,745</td>
<td>15</td>
<td>0.16</td>
<td>0.43</td>
<td>-0.24</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>3HP</td>
<td>3,986</td>
<td>7</td>
<td>0.07</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Per Protocol</td>
<td>9H</td>
<td>2,585</td>
<td>8</td>
<td>0.11</td>
<td>0.32</td>
<td>-0.19</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>3HP</td>
<td>3,273</td>
<td>4</td>
<td>0.05</td>
<td>0.13</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* non-inferiority margin (delta) = 0.75%
Difference in TB rates between the 2 study arms, and non-inferiority "delta"
Modified Intention to Treat Population; A33 analysis
Difference in TB rates between the 2 study arms, and non-inferiority “delta”

Per Protocol Population; A33 analysis
Cumulative TB Rate
33 months from enrollment—MITT

Log-rank P-value: 0.06
Additional Analyses

- 24 months from completion of treatment
 - Similar results
- Limited to first person enrolled in cluster
 - Similar results
- Including 4 culture-negative TB cases in adults (total TB = 26) (secondary endpoint)
 - Similar results
- Sensitivity analysis of primary endpoint
 - Number of additional cases in 3HP arm required to be unable to claim non-inferiority (assuming no additional cases in 9H arm):
 - 23
Tolerability
Participants who took ≥1 dose

<table>
<thead>
<tr>
<th>Outcome</th>
<th>9H N=3,759</th>
<th>3HP N=4,040</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatment completion</td>
<td>2,599 (69.0%)</td>
<td>3,327 (82.0%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Permanent drug d/c- any reason</td>
<td>1,160 (31.0%)</td>
<td>713 (18.0%)</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>Permanent drug d/c- due to an adverse event</td>
<td>139 (3.7%)</td>
<td>196 (4.9%)</td>
<td>0.009</td>
</tr>
<tr>
<td>Death</td>
<td>39 (1.0%)</td>
<td>31 (0.8%)</td>
<td>0.22</td>
</tr>
</tbody>
</table>
Reported Adverse Events
Among persons receiving ≥ 1 dose
During treatment or within 60 days of the last dose
Regardless of attribution to study drug

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>9H N=3,759</th>
<th>3HP N=4,040</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grade 1-2</td>
<td>341 (9.0%)</td>
<td>310 (7.6%)</td>
<td>0.03</td>
</tr>
<tr>
<td>Grade 3</td>
<td>203 (5.4%)</td>
<td>193 (4.8%)</td>
<td>0.22</td>
</tr>
<tr>
<td>Grade 4</td>
<td>43 (1.1%)</td>
<td>36 (0.9%)</td>
<td>0.27</td>
</tr>
</tbody>
</table>
Reported Adverse Events
Among persons receiving ≥ 1 dose
During treatment or within 60 days of the last dose
Accounting for attribution to study drug

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>9H N=3,759</th>
<th>3HP N=4,040</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Related to drug</td>
<td>206 (5.5)</td>
<td>328 (8.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Rash only</td>
<td>17 (0.5)</td>
<td>35 (0.9)</td>
<td>0.02</td>
</tr>
<tr>
<td>Possible HS</td>
<td>15 (0.4)</td>
<td>158 (3.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Other</td>
<td>71 (2.0)</td>
<td>122 (3.0)</td>
<td>0.001</td>
</tr>
<tr>
<td>Not related</td>
<td>399 (10.3)</td>
<td>220 (5.5)</td>
<td><0.0001</td>
</tr>
</tbody>
</table>

HS: hypersensitivity reaction
Hepatotoxicity
Among persons receiving ≥ 1 dose
During treatment or within 60 days of the last dose

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>9H N=3,759</th>
<th>3HP N=4,040</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All hepatotoxicity</td>
<td>113 (3.0)</td>
<td>24 (0.6)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Related to drug</td>
<td>103 (2.7)</td>
<td>18 (0.5)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Not related</td>
<td>13 (0.4)</td>
<td>6 (0.2)</td>
<td>0.08</td>
</tr>
</tbody>
</table>
Possible Hypersensitivity
Among persons receiving ≥ 1 dose
During treatment or within 60 days of the last dose

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>9H N=3,759</th>
<th>3HP N=4,040</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All hypersensitivity reactions</td>
<td>17 (0.5)</td>
<td>152 (3.8)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HS reactions with treatment discontinuation</td>
<td>15 (0.4)</td>
<td>117 (2.9)</td>
<td><0.0001</td>
</tr>
<tr>
<td>HS reactions w/ hypotension*</td>
<td>0</td>
<td>6 (0.15)</td>
<td></td>
</tr>
</tbody>
</table>

Systolic BP <90 mm Hg G1 n=3, G2 n=1, G3 n=2
Risk Factor Analysis for TB

Univariate

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reference group</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen (3RPT/INH)</td>
<td>9INH</td>
<td>0.43 (0.18, 1.07)</td>
<td>0.07</td>
</tr>
<tr>
<td>Age (10 years)</td>
<td>10 years younger</td>
<td>0.87 (0.65, 1.17)</td>
<td>0.37</td>
</tr>
<tr>
<td>Male sex</td>
<td>Female</td>
<td>1.50 (0.63, 3.58)</td>
<td>0.35</td>
</tr>
<tr>
<td>Black race</td>
<td>White race</td>
<td>1.56 (0.64, 3.81)</td>
<td>0.33</td>
</tr>
<tr>
<td>HIV +</td>
<td>HIV negative</td>
<td>7.00 (2.19, 22.30)</td>
<td>0.001</td>
</tr>
<tr>
<td>BMI (1 unit)</td>
<td>1 unit lower</td>
<td>0.85 (0.78, 0.93)</td>
<td>0.0006</td>
</tr>
<tr>
<td>EtOH abuse</td>
<td>No EtOH</td>
<td>4.84 (1.58, 14.78)</td>
<td>0.006</td>
</tr>
<tr>
<td>Current smoking</td>
<td>No smoking</td>
<td>4.73 (1.98, 11.27)</td>
<td>0.0005</td>
</tr>
<tr>
<td>IDU</td>
<td>No IDU</td>
<td>1.29 (0.17, 9.59)</td>
<td>0.80</td>
</tr>
<tr>
<td>High school</td>
<td>Completed</td>
<td>1.21 (0.51, 2.85)</td>
<td>0.66</td>
</tr>
<tr>
<td>Jail/prison</td>
<td>No jail/prison</td>
<td>3.12 (0.92, 10.54)</td>
<td>0.07</td>
</tr>
<tr>
<td>Unemployed</td>
<td>Not unemployed</td>
<td>2.55 (0.94, 6.92)</td>
<td>0.07</td>
</tr>
</tbody>
</table>

No interaction between treatment arm and above variables.
Risk Factor Analysis-for TB
Multivariate

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Reference group</th>
<th>HR (95% CI)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regimen (3RPT/INH)</td>
<td>9INH</td>
<td>0.38 (0.15, 0.99)</td>
<td>0.05</td>
</tr>
<tr>
<td>Age (10 years)</td>
<td>10 years younger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male sex</td>
<td>Female</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Black race</td>
<td>White race</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HIV +</td>
<td>HIV neg/unknown</td>
<td>4.07 (1.26, 3.16)</td>
<td>0.01</td>
</tr>
<tr>
<td>BMI (1 unit)</td>
<td>1 unit lower</td>
<td>0.81 (0.73, 0.90)</td>
<td>0.0002</td>
</tr>
<tr>
<td>EtOH abuse</td>
<td>EtOH use or none</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smoking-current</td>
<td>Smoke last 5 yrs/never</td>
<td>4.89 (1.90, 12.58)</td>
<td>0.001</td>
</tr>
<tr>
<td>IDU</td>
<td>No IDU</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High school</td>
<td>Completed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jail/prison</td>
<td>No jail/prison</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unemployed</td>
<td>Not unemployed</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Drug Resistance

Among TB cases

<table>
<thead>
<tr>
<th></th>
<th>9H N=12</th>
<th>3HP N=7</th>
</tr>
</thead>
<tbody>
<tr>
<td>INH resistant</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Rifampin resistant</td>
<td>0</td>
<td>1*</td>
</tr>
</tbody>
</table>

M. bovis in an HIV-infected person who completed therapy late due to treatment interruptions
Causes of Death by Arm

<table>
<thead>
<tr>
<th>Category</th>
<th>Arm A (N/%)</th>
<th>Arm B (N/%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant neoplasms (cancer)</td>
<td>15/38.46</td>
<td>8/25.81</td>
</tr>
<tr>
<td>Intentional injuries</td>
<td>6/15.38</td>
<td>1/3.23</td>
</tr>
<tr>
<td>Diseases of heart</td>
<td>4/10.26</td>
<td>8/25.81</td>
</tr>
<tr>
<td>Unintentional injuries</td>
<td>3/7.69</td>
<td>3/9.68</td>
</tr>
<tr>
<td>Chronic liver disease or cirrhosis</td>
<td>2/5.13</td>
<td>4/12.9</td>
</tr>
<tr>
<td>Hypertension (with or w/o renal disease)</td>
<td>2/5.13</td>
<td>1/3.23</td>
</tr>
<tr>
<td>AIDS</td>
<td>1/2.56</td>
<td>1/3.23</td>
</tr>
<tr>
<td>Cerebrovascular diseases</td>
<td>1/2.56</td>
<td>4/12.9</td>
</tr>
<tr>
<td>Chronic lower respiratory diseases</td>
<td>1/2.56</td>
<td>0/0</td>
</tr>
<tr>
<td>Chronic pancreatitis</td>
<td>1/2.56</td>
<td>0/0</td>
</tr>
<tr>
<td>Diabetes mellitus</td>
<td>1/2.56</td>
<td>0/0</td>
</tr>
<tr>
<td>Septicemia</td>
<td>1/2.56</td>
<td>1/3.23</td>
</tr>
<tr>
<td>Unknown</td>
<td>1/2.56</td>
<td>0/0</td>
</tr>
<tr>
<td>Total</td>
<td>39</td>
<td>31</td>
</tr>
</tbody>
</table>
Limitations

• Few HIV-infected participants
 – Enrollment of this population was extended to December 2010
 – Tolerability and effectiveness data pending

• Complete tolerability assessment in young children also pending
 – Enrollment of children 2-11 years old extended to December 2010
Conclusions
The PREVENT TB Study
TB Trials Consortium Study 26

• The effectiveness of 3HP was not inferior to 9H
 – 3HP was at least as effective as 9H
 • The 3HP TB rate was approximately half that of 9H

• The 3HP completion rate was significantly higher than 9H
 – 82% vs. 69%

• 3HP was safe relative to 9H
 – Lower rates of:
 • Any adverse event
 • Hepatotoxicity attributable to study drug
Conclusions
The PREVENT TB Study
TB Trials Consortium Study 26

• Permanent drug discontinuation due to adverse event was higher in 3HP
 – 4.7% vs. 3.6%

• Rates of any adverse event attributable to study drug also higher in 3HP
 – 8.1% vs. 5.5%
 – This relationship also seen with rash, possible hypersensitivity

• Rates of grade 3 and 4 toxicity did not differ by arm

• Rates of death low (~ 1%) in both arms
Interpretation

• The higher rates of 3HP drug discontinuation due to an adverse event and adverse event attributable to study drug could be related to:
 – Worse tolerability of 3HP
 – More frequent interaction with study personnel
 • Weekly in 3HP vs. monthly in 9H
 – Open-label design with novel regimen
 • participants and investigators
Potential Impact on TB Control

- 3HP is an alternative to 9H for treatment of latent *M. tuberculosis* infection in persons at high-risk for progression to TB
- Higher completion rates for treatment of LTBI
- 3HP as effective as 9H in this clinical trial
 - 3HP could be more effective than 9H in operational settings, particularly if 3HP is given under direct observation and 9H completion rates are 30-60%
 - Greater effectiveness → more TB prevented
Dissemination of Results

Uptake of Regimen

• CDC recommendation/guidelines
 – After publication of paper
• ATS/CDC/IDSA guidelines
 – Process starting now
 – May require >2 years to finalize
• Availability of rifapentine
• Ability of TB programs to implement DOT
• Monitoring for adverse events
 – Past history of isoniazid, rifampin + pyrazinamide
Acknowledgments

• All persons who enrolled in the study
• George McSherry, William Burman, Sharon Nachman (IMPAACT)
 – Pediatrics
• Debra Benator, Constance Benson (ACTG)
 – HIV
• William MacKenzie
 – PK
• Margaret Jackson
 – IRB coordinator, TBTC Steering Committee Meeting Coordinator
• Connie Henderson, Crystal Carter, Marie Hannett
 – Study site support, study enrollments, patient educational material
• Anil Sharma, Silver Wang, Howard Davis, Nigel Scott, Ruth Moro
 – Data management, application development and analysis
• Andrew Nunn, Lawrence Moulton, Chad Heilig, Jose Becerra
 – Statistical consultants
Acknowledgments

• Stefan Goldberg, Kimberly Chapman
 – Study decline log
• Beverly Metchock, Lois Diem
 – CDC Mycobacteriology Laboratory
• Francios Bompart, Isabelle Cieren-Puideux, Brigitte Demers
 – sanofi-aventis group; study drug (rifapentine)
• Jonathan Kaplan, James Neaton, David Ashkin
 – Data Safety Monitoring Board (DSMB)
• Mark Cotton, Wing Wai Yew, John Johnson
 – TB endpoints committee
• Bert Arevalo, Nancy Dianis, Kathleen Robergeau
 – Westat (site monitoring)
 – HIV
• Andy Vernon, Ken Castro
 – Advice, support
Study Sites
Principal Investigators and Study Coordinators

University of North Texas Health Science Center at Ft. Worth (UNTHSC) (1396)
Stephen E. Weis, D.O., Michel Fernandez, MD, Barbara King, RN, Lee Turk, RN, Norma Shafer, Gloria Stevenson, RN, Guadalupe Bayona, MD, Randy Dean, RN, Joseph Helal, MS, RPh, Gerry Burgess, RN.

Hospital Universitario Clementino Fraga Filho – Rio de Janeiro, Brazil, Johns Hopkins (665)
Marcus B. Conde, MD, Fernanda C. Q. Mello, MD, Anne Efron, MSN, MPH, Carla Loredo, RN, Millene Barty S. Fortuna, Michelle Cailleaux-Cezar, MD, Renata L. Guerra, MD, Gisele Mota, RN, Cristina Felix, RN, Afranio Kritski, PhD, Valéria de Oliveira, Claudeci dos Santos Sacramento.

South Texas - Department of State Health Services (DSHS) Region 11 Clinics (656)
Richard Wing, MD, Diane Wing, RN, Diana Valenzuela, LVN, Josefina Gonzalez, LVN, Juan Uribe, RN, Brian R. Smith, MD.

Audie L. Murphy VA Hospital, San Antonio, TX (519)
Marc Weiner, MD, Melissa Engle, CRT, CCRC, Jose A. Jimenez, BS, Hipolito Pavon, MPH, Victoria Rodriguez, RN, Col. Kevin B. West, MD, Col. David Dooley, MD, Col. Duane Hospenthal, MD, PhD.

Vanderbilt University Medical Center and Nashville Metro Public Health Department (378)
Timothy Sterling, MD, Linda R. Hammock RN, Amy Kerrigan, RN MSN, Belinda Redd, LPN, Ingrid Montgomery, RN, Kathleen Miller, RN.
Study Sites
Principal Investigators and Study Coordinators

University of Southern California (375)
Brenda E. Jones, MD, Patricio Escalante, MD, Peregrina Molina, RN, Claudia Silva, RN, Angela Grbic, RN, Maria Brown, MPH, Bonifacia Oamar, RN, Ermelinda Rayos, CW, Celia Luken.

Columbia University College of Physicians and Surgeons (363)
Neil W. Schluger, MD, Joseph Burzynski, MD, Vilma Lozano, RN, Magda Wolk, RN.

University of Medicine and Dentistry New Jersey (UMDNJ) (362)
Bonita T. Mangura, MD, Lee B. Reichman, MD, George McSherry MD, Alfred Lardizabal, MD, Maria Corazon Leus, RN, Marilyn Owens, RN, Eileen Napolitano, Laurie Kellert, RN, Veronica Anokute, RN.

Denver Public Health Department (337)
William Burman, MD, Randall Reves, MD, Robert Belknap, MD, David Cohn, MD, Jan Tapy, RN, Grace Sanchez, CCA, Laurie Luna, RN

University of California, San Diego Medical Center (UCSD) (327)
Antonino Catanzaro, MD, Philip LoBue, MD, Kathleen Moser, MD, Mark Tracy, MD, Peach Francisco, RN, Judy Davis.

Montreal Chest Institute (290)
Richard I. Menzies, MD, Kevin Schwartzman, MD, MPH, Christina Greenaway, MD, Larry Lands, MD, Sharyn Mannix, MD, Paul Brassard, MD, MSc, Bérénice Morzetzai, MD, Barry Rabinovich, MD, Marthe Pelletier, Chantal Valiquette, Joanne Tremblay, Paul Anglade Plaisir, Rebecca Binet, BSc.
Study Sites
Principal Investigators and Study Coordinators

Public Health – Seattle and King County Public Health (259)
Masa Narita, MD, Charles M. Nolan, MD, Stefan Goldberg, MD, Debra Schwartz, RN, Linh Deretsky, Marcia Stone, RN, MPH, Connie Friedly, RN.

Agencia de Salut Publica – Barcelona, Spain and UNTHSC (255)
Joan A. Cayla, MD, PhD, Jose M. Miró, MD, PhD, Maria Antonia Sambeat, MD, PhD, Jose L. López Colomés, MD, José A. Martinez, MD, Xavier Martinez-Lacasa MD, PhD, Angels Orcau, MD, Paquita Sanchez, MD, Cecilia Tortajada, MD, PhD, Imma Ocana, MD, PhD, Juan P. Millet, MD, MPH, Antonio Moreno, MD, Jeanne Nelson, MPH, Omar Sued, MD, Mª Luiza de Souza, MD, María A. Jiménez, MD, Lucía del Baño RN, Laia Fina MSc.

University of California, San Francisco (221)
Payam Nahid, MD, MPH, Philip Hopewell, MD, Charles Daley, MD, Robert Jasmer, MD, Cindy Merrifield, RN, William Stanton, RN, Irina Rudoy, MD, Jill Israel, RN.

Johns Hopkins University (221)
Richard Chaisson MD, Susan Dorman, MD, Jim Fisher, Gina Maltas, RN, Judith Hackman, RN.

Duke University (201)
Carol Dukes Hamilton, MD, Jason Stout, MD, MHS, Ann Mosher, RN, MPH, FNP-BC, Emily J. Hecker, RN, MSN, Brenda Ho, RN, Elle Rich, RN, MPH.

Boston University Medical Center (180)
John Bernardo, MD, Jussi Saukkonen, MD, Claire Murphy, RN, Denise Brett-Curran, RN.
Study Sites
Principal Investigators and Study Coordinators

Edward Hines Jr. VA Medical Center Chicago (178)
Constance T. Pachucki, MD, Anna Lee, MD, Susan Marantz MD, Mary Poly Samuel, RN, Ana Zulaga BS, MPH.

Harlem Hospital Center (159)
Wafaa M. El-Sadr, MD, MPH, Mary Klein, RN, Cyrus Badshah, MD, John Salazar Schicchi, MD, Yael Hirsh-Moverman, MPH.

Emory University Department of Medicine (126)
Susan M. Ray, MD, David P. Holland, MD, Deirdre Dixon, Omar Mohamed, Kanoa Folami, Jane Bush, MA, Cheryl D. Simpson, BS, Gibson Barika, Wenona N. Favors, Nicole Snow

Jesse Brown VA Medical Center, Chicago (122)
Mondira Bhattacharya, MD, Susan Lippold, MD, MPH, William Clapp, MD, Julie Fabre, RN, MPH.

The University of British Columbia (121)
J. Mark Fitzgerald, MD, Kevin Elwood, MD, Edwardo Hernandez, MD, Banafsheh Peyvandi, MD, Kadria Alasaly, MD.

VA Little Rock, Arkansas – Arkansas Department of Health (114)
Iram Bakhtawar, MD, Frank Wilson, MD, Pauline Wassler, RN, Annette Arnold, RN, Kathy Haden, RN, Jamie Owen, RN.

University of Manitoba (88)
Wayne Kepron, MD, Earl Hershfield, MD, Marian Roth, RN, Gerry A. Izon, RN.
Study Sites
Principal Investigators and Study Coordinators

VA Houston Texas – Ben Taub General Hospital (61)
Elizabeth Guy, MD, Christopher Lahart, MD, Terry Scott, RN, Ruby Nickson, RN.

Washington DC Veterans Affairs Medical Center (45)
Fred Gordin, MD, Debra Benator, MD, Donna S. Conwell, RN.

New York University Bellevue Hospital Center (33)
Rany Condos, MD, William Rom, MD, Laurie Sandman, RN.

Carolina Medical Center (1)
Amina Ahmed, MD, James Horton, MD, Jennifer West, RN, Elizabeth Quinn, RN.