Fundamentals of Tuberculosis (TB)

TB in the United States

- From 1953 to 1984, reported cases decreased by approximately 5.6% each year
- From 1985 to 1992, reported cases increased by 20%
- 25,313 cases reported in 1993
- Since 1993, cases are steadily declining

2

Factors Contributing to the Increase in TB Cases

- HIV epidemic
- Increased immigration from highprevalence countries
- Transmission of TB in congregate settings (e.g., correctional facilities, long term care)
- Deterioration of the public health care infrastructure

3

1

Transmission and Pathogenesis of TB

- Caused by Mycobacterium tuberculosis (M. tuberculosis)
- Spread person to person through airborne particles that contain *M. tuberculosis*, called droplet nuclei
- Transmission occurs when an infectious person coughs, sneezes, laughs, or sings
- Prolonged contact needed for transmission
- 10% of infected persons will develop TB disease at some point in their lives

Not Everyone Exposed Becomes Infected

- Probability of transmission depends
 - Infectiousness
 - Type of environment
 - Length of exposure
- 10% of infected persons will develop TB disease at some point in their lives

 - 5% at some point in their lives

6

Persons at Risk for Developing **TB** Disease

- Persons at high risk for developing TB disease fall into 2 categories
 - Those who have been recently infected
 - Those with clinical conditions that increase their risk of progressing from LTBI to TB disease

Recent Infection as a Risk Factor

Persons more likely to have been recently infected include

- · Close contacts to persons with infectious TB
- Skin test converters (within past 2 years)
- Recent immigrants from TB-endemic areas (within 5 years of arrival to the U.S.)
- Children \leq 5 years with a positive TST
- Residents and employees of high-risk • congregate settings (e.g. correctional facilities, homeless shelters, healthcare facilities)

Increased Risk for Progression to TB Disease

Persons more likely to progress from LTBI to TB disease include

- · HIV infected persons
- · Those with history of prior, untreated TB
- Underweight or malnourished persons
- · Injection drug use
- Those receiving TNF- α antagonists for treatment of rheumatoid arthritis or Crohn's disease
- Certain medical conditions

Latent TB Infection (LTBI)

- Occurs when person breathes in bacteria and it reaches the air sacs (alveoli) of lung
- Immune system keeps bacilli contained and under control

10

 Person is not infectious and has no symptoms

TB Disease

- Occurs when immune system cannot keep bacilli contained
- Bacilli begin to multiply rapidly
- Person develops TB symptoms

LTBI vs. TB Disease

LTBI	TB Disease
Tubercle bacilli in the body	
TST or QFT-Gold [®] result usually positive	
Chest x-ray usually normal	Chest x-ray usually abnormal
Sputum smears and cultures negative	Symptoms smears and cultures positive
No symptoms	Symptoms such as cough, fever, weight, loss
Not infectious	Often infectious before treatment
Not a case of TB	A case of TB

11

- Detects persons with LTBI who would benefit from treatment
- De-emphasize testing of groups of people who are not at risk (mass screening)
- · Consider using a risk assessment tool
- Testing should be done only if there is an intent to treat
- Can help reduce the waste of resources and prevent unnecessary treatment

13

Groups to Target with the Tuberculin Skin Test

- Persons with or at risk for HIV infection
- · Close contacts of persons with infectious TB
- · Persons with certain medical conditions
- Injection drug users
- · Foreign-born persons from areas where TB is common
- Medically underserved, low-income populations
- · Residents of high-risk congregate settings
- · Locally identified high-prevalence groups

14

Administering the TST

- · Use Mantoux tuberculin skin test
- 0.1 mL of 5-TU of purified protein derivative (PPD) solution injected intradermally
- Use a 27 gauge needle
- Produce a wheal that is 6-10mm in diameter

15

Reading the TST

- Read within 48-72 hours
- Measure induration, not erythema
- Positive reactions can be measured accurately for up to 7 days
- Negative reactions can be read accurately for only 72 hours

TST Interpretation - 1

5 mm of induration is positive in:

- HIV-infected persons
- Close contacts to an infectious TB case
- Persons who have chest x-ray findings consistent with prior untreated TB
- Organ transplant recipients
- Persons who are immunosuppressed (e.g., those taking the equivalent of >15 mg/d of prednisone for 1 month or those taking TNF- α antagonists)

17

19

TST Interpretation - 2

10 mm induration is positive in:

- Recent immigrants (within last 5 years) from a high-prevalence country
- Injection drug users
- Persons with other high-risk medical conditions
- Residents or employees of high-risk congregate settings
- Mycobacteriology laboratory personnel
- Children < 4 years of age; infants, children, and adolescents exposed to adults at high risk

18

TST Interpretation - 3

15 mm induration is positive in:

 Persons with no known risk factors for TB

Recording TST Results

- Record results in millimeters of induration, not "negative" or "positive"
- Only trained healthcare professionals should read and interpret TST results

False Positive TST Reactions

- Nontuberculous mycobacteria

 Reactions are usually ≤10mm of induration
- · BCG vaccination
 - Reactivity in BCG vaccine recipients generally wanes over time
 - Positive TST results is likely due to TB infection if risk factors are present
 - BCG-vaccinated persons with positive TST result should be evaluated for treatment of LTBI
 - QFT is able to distinguish *M.tb* from other mycobacteria and BCG vaccine

21

False Negative TST Reactions

- Anergy, or inability to react to TST because of weakened immune system
- Recent TB infection (2-10 weeks after exposure)
- Very young age (newborns)
- Recent live-virus vaccination can temporarily suppress TST reactivity
- Poor TST administration technique (too shallow or too deep, or wheal is too small)

22

Boosting

- Some people with history of LTBI lose their ability to react to tuberculin (immune system "forgets" how to react to TB-like substance, i.e., PPD)
- Initial TST may stimulate (boost) the ability to react to tuberculin
- Positive reactions to subsequent tests may be misinterpreted as new infections rather than "boosted" reactions

23

Two-Step Testing - 1

- A strategy for differentiating between boosted reactions and reactions caused by recent TB infection
- Use two-step testing for initial (baseline) skin testing of adults who will be re-tested periodically
- 2nd skin test given 1-3 weeks after baseline

- If the 1st TST is positive, consider the person infected
- If the 1st TST is negative, administer 2nd TST in 1-3 weeks
- If the 2nd TST is positive, consider the person infected
- If the 2nd TST is negative, consider the person uninfected at baseline

25

26

• Bacteriologic exam (smear and culture)

29

Symptoms of TB

- Productive prolonged cough^{*}
- Hemoptysis*
- · Fever and chills
- Night sweats
- Loss of appetite
- Weight loss
- *Commonly seen in cases of pulmonary TB

- · Obtain chest x-ray for patients with positive TST results or with symptoms suggestive of TB
- Abnormal chest x-ray, by itself, cannot confirm the diagnosis of TB but can be used in conjunction with other diagnostic indicators

31

Sputum Collection

- Sputum specimens are essential to confirm TB
 - Specimens should be from lung secretions, not saliva
- Collect 3 specimens on 3 different days
- Spontaneous morning sputum more desirable than induced specimens
- · Collect sputum before treatment is initiated

32

- Strongly consider TB in patients with smears containing acid-fast bacilli (AFB)
- Use subsequent smear examinations to assess patient's infectiousness and response to treatment

33

Culture

- Used to confirm diagnosis of TB
- Culture all specimens, even if smear is negative
- Initial drug isolate should be used to determine drug susceptibility

34

36

Treatment of TB Disease

- Include four 1st-line drugs in initial regimen
 - Isoniazid (INH)
 - Rifampin (RIF)
 - Pyrazinamide (PZA)
 - Ethambutol (EMB)
- Adjust regimen when drug susceptibility results become available or if patient has difficulty with any of the medications
- Never add a single drug to a failing regimen
- Promote adherence and ensure treatment completion

Directly Observed Therapy (DOT)

- Health care worker watches patient swallow each dose of medication
- DOT is the best way to ensure adherence
- Should be used with all intermittent regimens
- Reduces relapse of TB disease and acquired drug resistance

37

Clinical Monitoring

Instruct patients taking TB medications to immediately report the following:

- Rash
- Nausea, loss of appetite, vomiting, abdominal pain
- Persistently dark urine
- Fatigue or weakness
- Persistent numbness in hands or feet

38

Drug Resistance

- Primary infection with a strain of *M.* tuberculosis that is already resistant to one or more drugs
- Acquired infection with a strain of *M. tuberculosis* that becomes drug resistant due to inappropriate or inadequate treatment

39

Barriers to Adherence

- Stigma
- · Extensive duration of treatment
- · Adverse reactions to medications
- · Concerns of toxicity
- Lack of knowledge about TB and its treatment

- Adherence is the responsibility of the provider, not the patient and can be ensured by:
 - Patient education
 - Directly observed therapy (DOT)
 - Case management
 - Incentives/enablers

41

Measures to Promote Adherence

- Develop an individualized treatment plan for each patient
- Provide culturally and linguistically appropriate care to patient
- Educate patient about TB, medication dosage, and possible adverse reactions
- Use incentives and enablers to address barriers
- · Facilitate access to health and social services

42

Completion of Therapy

- Based on total number of doses administered, not duration of treatment
- Extend or re-start if there were frequent or prolonged interruptions

Meeting the Challenge

- Prevent TB by assessing risk factors
- If risk is present, perform TST
- If TST is positive, rule out active disease
- If active disease is ruled out, initiate treatment for LTBI
- · If treatment is initiated, ensure completion

