EPI Case Study 1: Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of M. tuberculosis
Estimated Time to Complete Exercise: 30 minutes

LEARNING OBJECTIVES

At the completion of this Case Study, participants should be able to:
$>$ Explain why denominators are necessary when comparing changes in morbidity and mortality over time
> Distinguish between incidence rates and prevalence ratios
Calculate and interpret cause-specific morbidity and mortality rates
$>$ Describe how changes in mortality or morbidity could be due to an artifact rather than a real change

ASPH EPIDEMIOLOGY COMPETENCIES ADDRESSED

C. 3. Describe a public health problem in terms of magnitude, person, place, and time
C. 6. Apply the basic terminology and definitions of epidemiology
C. 7. Calculate basic epidemiology measures
C. 9. Draw appropriate inference from epidemiologic data
C. 10. Evaluate the strengths and limitations of epidemiologic reports

ASPH INTERDISCIPLINARYICROSS-CUTTING COMPETENCIES ADDRESSED

F.1. [Communication and Informatics] Describe how the public health information infrastructure is used to collect, process, maintain, and disseminate data
J.1. [Professionalism] Discuss sentinel events in the history and development of the public health profession and their relevance for practice in the field
L.2. [Systems Thinking] Identify unintended consequences produced by changes made to a public health system

This material was developed by the staff at the Global Tuberculosis Institute (GTBI), one of four Regional Training and Medical Consultation Centers funded by the Centers for Disease Control and Prevention. It is published for learning purposes only. Permission to reprint excerpts from other sources was granted.

Case study author(s) name and position:
George Khalil, MPH (work done as MPH candidate)
Marian R. Passannante, PhD
Associate Professor, University of Medicine \& Dentistry of New Jersey, New Jersey Medical School and School of Public Health
Epidemiologist, NJMS, GTBI
For further information please contact:
New Jersey Medical School Global Tuberculosis Institute (GTBI)
225 Warren Street P.O. Box 1709
Newark, NJ 07101-1709 or by phone at 973-972-0979

[^0]EPIDEMIOLOGY CASE STUDY 1:
Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis

STUDENT VERSION 1.0

TB Surveillance

Since 1953, in cooperation with state and local health departments, the Centers for Disease Control and Prevention (CDC) has collected information on each newly reported case of tuberculosis (TB) disease in the United States. Currently, each TB case report (Report of Verified Case of Tuberculosis or RVCT) is submitted electronically to CDC's Division of Tuberculosis Elimination. Figure 1 depicts reported TB cases in the United States from 1982 to $2005 .{ }^{1}$

Figure 1. Reported TB Cases

Question 1

What factors might have contributed to the increase in TB cases from the mid 1980s to $1992 ?$ (See figure1 above.)

EPIDEMIOLOGY CASE STUDY 1:
Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis

STUDENT VERSION 1.0

Table 1 below presents the distribution of new cases of tuberculosis by age group and sex. Use this information to answer the next question.

Table 1. Number of TB Cases Reported to CDC by Age Group and Sex for 2007

Age	Sex	No. TB Cases
<15	M	388
<15	F	391
$15-24$	M	915
$15-24$	F	666
$25-44$	M	2557
$25-44$	F	1759
$45-64$	M	2747
$45-64$	F	1294
≥ 65	M	1502
≥ 65	F	1076

Source: Table 15. Tuberculosis Cases by Hispanic Ethnicity and Non-Hispanic Race, Sex, and Age Group: United States, 2007^{2}

Question 2

A. In 2007, which group had the greatest number of TB cases?
B. Does this mean that males 44-65 years of age are at greatest risk for developing TB?

Estimating the Risk of Developing TB disease

The number of TB cases per 100,000 population, called the TB case rate, is determined by the following equation:

number of new TB cases that occur during a specified time period \quad x 100,000 the population at risk

Also called cumulative incidence or an incidence rate, this formula provides an estimate of the risk for developing a disease. The population at risk information for the United States, which is needed to calculate the TB incidence (or case) rate, is collected by the US Census. Information on the US population by year can be found on the United States Census Bureau's American Factfinder website (http://factfinder.census.gov/home/saff/main.html? lang=en).

EPIDEMIOLOGY CASE STUDY 1:
Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis STUDENT VERSION 1.0

Question 3

A. Estimated ${ }^{*}$ population values and the number of new TB cases reported to the CDC appear in Table 2 below. Use this data to calculate the TB (incidence rates) case rates for years 2000 to 2007.

Table 2. TB Case Rates: 2000-2007

Year	New Cases	US Population Estimates	Case rate per 100,000 (incidence rate)
2000	16309	$281,189,655$	5.8
2001	15946	$284,750,000$	
2002	15056	$289,538,462$	
2003	14837	$290,921,569$	
2004	14501	$295,938,776$	
2005	14065	$293,020,833$	
2006	13754	$299,000,000$	
2007	13299	$302,250,000$	

* Estimated population values for this exercise were generated used the rates and cases that appear in the 2007 Surveillance Report (reference 2).
B. Describe the trend in TB incidence rates over time.

Question 4

Use the CDC data and Table 3 below to calculate the age-specific incidence rates of TB for 2007. EXAMPLE: 2007 <15 yr. old males = 245/10,652,174X 100,000=2.3

Table 3. Case Rates: 2007

Age	Sex	Cases	Estimated Population by Sex and Age Group	Incidence Rate per 100,000
<5	F	$\mathbf{2 4 5}$	$\mathbf{1 0 , 6 5 2 , 1 7 4}$	2.3
<5	F	221	$10,045,455$	
$5-14$	M	143	$\mathbf{2 0 , 4 2 8 , 5 7 1}$	
$5-14$	F	170	$18,888,889$	
$15-24$	M	915	$21,785,714$	
$15-24$	F	666	$20,812,500$	
$25-44$	M	2557	$42,616,667$	
$25-44$	F	1759	$41,880,952$	
$45-64$	M	2747	$\mathbf{3 7 , 1 2 1 , 6 2 2}$	
$45-64$	F	1294	$39,212,121$	
≥ 65	M	1502	$15,978,723$	
≥ 65	F	1076	$21,959,184$	

EPIDEMIOLOGY CASE STUDY 1:

Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis

STUDENT VERSION 1.0

Question 5

A. Which group has the highest incidence rate of TB in 2007?
B. Why do you think this age group has the highest TB case (incidence) rate of TB?
C. Is your answer for question 5a different from your answer for question $2 a$? If so, justify why your answer is different.

TB Incidence Rates and Mortality Rates

Look at Table 4 on the next page of this exercise. This table presents information on TB morbidity (or illness) by providing the number of cases and the case (incidence) rates. It also presents information on mortality (or death) associated with TB in the US by providing the number of deaths and the death rates from 1953 to 2006.

Question 6

Describe the change in TB case (incidence) rates presented in Table 4 below.

EPIDEMIOLOGY CASE STUDY 1:
Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis STUDENT VERSION 1.0

Table 4.
Tuberculosis Cases, Case Rates per 100,000 Population, Deaths, and Death Rates per 100,000 Population, and Percent Change: United States, 1953-2007²

Tuberculosis Cases					Tuberculosis Deaths			
Year			Percent	ange			Percent Change	
	Number	Rate	Number	Rate	Number ${ }^{1}$	Rate ${ }^{1}$	Number	Rate
1953	84,304	52.6	--	--	19,707	12.4	--	--
1954	79,775	48.9	-5.4	-7.0	16,527	10.2	-16.1	-17.7
1955	77,368	46.6	-3.0	-4.7	15,016	9.1	-9.1	-10.8
1956	69,895	41.4	-9.7	-11.1	14,137	8.4	-5.9	-7.7
1957	67,149	39.0	-3.9	-5.8	13,390	7.8	-5.3	-7.1
1958	63,534	36.3	-5.4	-6.9	12,417	7.1	-7.3	-9.0
1959	57,535	32.4	-9.4	-10.7	11,474	6.5	-7.6	-8.5
1960	55,494	30.7	-3.5	-5.2	10,866	6.0	-5.3	-7.7
1961	53,726	29.2	-3.2	-4.9	9,938	5.4	-8.5	-10.0
1962	53,315	28.6	-0.8	-2.1	9,506	5.1	-4.3	-5.6
1963	54,042	28.6	+1.4	0.0	9,311	4.9	-2.1	-3.9
1964	50,874	26.5	-5.9	-7.3	8,303	4.3	-10.8	-12.2
1965	49,016	25.2	-3.7	-4.9	7,934	4.1	-4.4	-4.7
1966	47,767	24.3	-2.5	-3.6	7,625	3.9	-3.9	-4.9
1967	45,647	23.0	-4.4	-5.3	6,901	3.5	-9.5	-10.3
1968	42,623	21.2	-6.6	-7.8	6,292	3.1	-8.8	-11.4
1969	39,120	19.3	-8.2	-9.0	5,567	2.8	-11.5	-9.7
1970	37,137	18.1	-5.1	-6.2	5,217	2.6	-6.3	-7.1
1971	35,217	17.0	-5.2	-6.1	4,501	2.2	-13.7	-15.4
1972	32,882	15.7	-6.6	-7.6	4,376	2.1	-2.8	-4.5
1973	30,998	14.6	-5.7	-7.0	3,875	1.8	-11.4	-14.5
1974	30,122	14.1	-2.8	-3.4	3,513	1.7	-9.3	-5.6
1975	33,989	15.7	--	--	3,333	1.6	-5.1	-5.9
1976	32,105	14.7	-5.5	-6.4	3,130	1.5	-6.1	-6.3
1977	30,145	13.7	-6.1	-6.8	2,968	1.4	-5.2	-6.7
1978	28,521	12.8	-5.4	-6.6	2,914	1.3	-1.8	-7.1
1979	27,669	12.3	-3.0	-3.9	2,007 ${ }^{\text {² }}$	$0.9{ }^{2}$	-31.1 ${ }^{2}$	-30.8 ${ }^{2}$
1980	27,749	12.2	+0.3	-0.7	1,978	0.9	-1.4	0.0
1981	27,373	11.9	-1.4	-2.3	1,937	0.8	-2.1	-11.1
1982	25,520	11.0	-6.8	-7.7	1,807	0.8	-6.7	0.0
1983	23,846	10.2	-6.6	-7.4	1,779	0.8	-1.5	0.0
1984	22,255	9.4	-6.7	-7.5	1,729	0.7	-2.8	-12.5
1985	22,201	9.3	-0.2	-1.1	1,752	0.7	+1.3	0.0
1986	22,768	9.5	+2.6	+1.6	1,782	0.7	+1.7	0.0
1987	22,517	9.3	-1.1	-2.0	1,755	0.7	-1.5	0.0
1988	22,436	9.2	-0.4	-1.3	1,921	0.8	+9.5	+14.3
1989	23,495	9.5	+4.7	+3.7	1,970	0.8	+2.6	0.0
1990	25,701	10.3	+9.4	+8.2	1,810	0.7	-8.1	-12.5
1991	26,283	10.4	+2.3	+0.9	1,713	0.7	-5.4	0.0
1992	26,673	10.4	+1.5	+0.1	1,705	0.7	-0.5	0.0
1993	25,107	9.7	-5.9	-7.1	1,631	0.6	-4.3	-14.3
1994	24,205	9.2	-3.6	-4.8	1,478	0.6	-9.4	0.0
1995	22,728	8.5	-6.1	-7.2	1,336	0.5	-9.6	-16.7
1996	21,210	7.9	-6.7	-7.8	1,202	0.5	-10.0	0.0
1997	19,751	7.2	-6.9	-8.0	1,166	0.4	-3.0	-20.0
1998	18,287	6.6	-7.4	-8.5	1,112	0.4	-4.6	0.0
1999	17,501	6.3	-4.3	-5.4	930	0.3	-16.4	-25.0
2000	16,309	5.8	-6.8	-7.9	776	0.3	-16.6	0.0
2001	15,946	5.6	-2.2	-3.2	764	0.3	-1.6	0.0
2002	15,056	5.2	-5.6	-6.5	784	0.3	+2.6	0.0
2003	14,837	5.1	-1.5	-2.3	711	0.2	-10.2	-33.3
2004	14,501	4.9	-2.3	-3.2	662	0.2	-6.9	0.0
2005	14,065	4.8	-3.0	-3.9	648	0.2	-2.1	0.0
2006	13,754	4.6	-2.2	-3.1	644	0.2	-0.6	0.0
2007	13,299	4.4	-3.3	-4.2	\ldots	...	\ldots	...

[^1]Source: CDC. Reported Tuberculosis in the United States, 2007. Atlanta, GA: U.S. Department of Health and Human Services, CDC, September 2008. Table 1, page 15.

EPIDEMIOLOGY CASE STUDY 1:

Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis STUDENT VERSION 1.0

Question 7

Table 4 includes the cause-specific death rates associated with TB.
Definition: number of deaths associated with TB each year $\times 100,000$ Mid-period population

The rates for 1977, 1978 and 1979 are repeated below.

Year	Cause-Specific Death Rate for TB
1977	$\mathbf{1 . 4}$ per $\mathbf{1 0 0 , 0 0 0}$
1978	$\mathbf{1 . 3}$ per $\mathbf{1 0 0 , 0 0 0}$
1979	$\mathbf{0 . 9}$ per $\mathbf{1 0 0 , 0 0 0}$

What is the TB mortality rate percent change between 1977 and $1978 ?$
Remember: Percent change formula: Time2-Time1 x 100
Time 1

Question 8

What is the TB death rate percent change between1978 and $1979 ?$

Question 9

What are the possible reasons there was such a large difference between the rates for these years?

EPIDEMIOLOGY CASE STUDY 1:
Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of
M. tuberculosis

STUDENT VERSION 1.0

TB Morbidity (Incidence Rates vs. Prevalence Ratios)

Tuberculosis is a disease where people can become infected and remain infected without symptoms for many years. TB infection (without active disease) is called latent TB infection. The identification and treatment of people with latent TB infection is an important goal of TB control, because successful treatment of TB infection will prevent progression from infection to active disease. TB infection can be detected using a skin test and more recently through a blood test.

An epidemiologic measure that can be used to measure the proportion of a population with a specific infection or disease is called the prevalence ratio. For example, conducting tuberculin skin testing in a homeless shelter would provide a measure of the proportion of residents who have been infected with TB. This would include both old and new infections.

The following formula can be used to determine the prevalence ratio:
number of new and old TB infections during a specified time period $\times 100,000$
total (usually mid-period population) during the same time period
Note: incidence rates and prevalence ratios may be expressed per 100 or per 1,000 . They are commonly presented per 100,000.

Question 10

Suppose that a county TB controller would like to know how many people currently living in a local nursing home are infected with TB. After receiving the appropriate approval and consent from the nursing home residents and administration, she has a trained nurse administer and read the results of tuberculin skin tests. Of the 100 nursing home residents who were tested, 30 had positive tuberculin skin test results during July of that year.

What is the prevalence ratio of TB infection in this nursing home during the month of July? Provide your answer per 100.

Question 11

In this particular nursing home, all 100 residents remained in this nursing home for the next year at which time only those who did not have an initial positive tuberculin skin test result were tested again. Among these 70 residents who were tested again, 5 had a positive tuberculin skin test result.

What is the incidence rate of TB infection in this nursing home during the next year?

Works Cited

1. Centers for Disease Control and Prevention. Division of Tuberculosis Elimination 2007

Slide Set. [Online]. http://www.cdc.gov/tb/statistics/surv/surv2007/default.htm Last accessed June 17, 2009.
2. CDC. Reported Tuberculosis in the United States, 2007. Atlanta, GA: U.S. Department of Health and Human Services, CDC, September 2008.
http://www.cdc.gov/tb/statistics/reports/2007/default.htm Last accessed June 17, 2009.

[^0]: Suggested citation: New Jersey Medical School Global Tuberculosis Institute. Incorporating Tuberculosis into Public Health Core Curriculum.I 2009: EPIDEMIOLOGY CASE STUDY 1:Incidence, Prevalence, and Disease Surveillance; Historical Trends in the Epidemiology of M. tuberculosis STUDENT Version 1.0.

[^1]: Official tuberculosis mortality statistics were compiled by the National Center for Health Statistics, CDC, National Vital Statistics Reports.
 ${ }^{2}$ The large decrease in death rate in 1979 occurred because late effects of tuberculosis (e.g., bronchiectasis or fibrosis) and pleurisy with effusion (without mention of cause) are no longer included in tuberculosis deaths.

